- HILDERBRAND, R. L., CURLEY-JOSEPH, J., LUBANSKY, H. J. & HENDERSON, T. O. (1982). Top. Phosphorus Chem. 11, 297-338.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
- Kowalik, J., Sawka-Dobrowolska, W. & Głowiak, T. (1984). J. Chem. Soc. Chem. Commun. pp. 446–447.
- LEBIODA, Ł., MARSHALL, J. A. & FLYNN, K. E. (1984). Acta Cryst. C40, 1188-1190.
- PHILLIPS, S. E. V. & TROTTER, J. (1976). Acta Cryst. B32, 1423-1426.
- Syntex (1976). XTL Structure Determination System. Syntex Analytical Instruments, Cupertino, California.
- VASELLA, A. & VOEFFRAY, R. (1982). Helv. Chim. Acta, 65, 1953-1964.

Acta Cryst. (1985). C41, 1258-1260

The Ammonium Salt of 5-Nitrobarbituric Acid, NH_4^+ . $C_4H_2N_3O_5^-$

By OLE SIMONSEN

Department of Chemistry, University of Odense, DK-5230 Odense, Denmark

(Received 12 February 1985; accepted 7 May 1985)

Abstract. $M_r = 190.12$, triclinic, $P\overline{1}$, a = 4.9184 (4), b = 7.6947 (5), c = 9.8195 (6) Å, a = 104.911 (5), $\beta = 92.666$ (6), $\gamma = 105.085$ (6)°, V = 344.2 (2) Å³, Z = 2, $D_m = 1.83$ (1), $D_x = 1.835$ (1) Mg m⁻³, λ (Mo Ka) = 0.71073 Å, $\mu = 0.164$ mm⁻¹, F(000) =196, T = 295 K. R = 0.038 for 1596 unique observed reflections. The anion is nearly planar with only small deviations from mirror symmetry related to a mirror plane perpendicular to the molecular plane. Formation of the NH₄⁺ salt of 5-nitrobarbituric acid (dilituric acid) does not increase the delocalization of π -electron density to the nitro group. The crystal structure is stabilized by intermolecular hydrogen bonds involving all the H atoms.

Introduction. The structure determination of the ammonium salt of 5-nitrobarbituric acid is part of a study of structural changes associated with the steps in the series: compounds, nitro compound, anion of nitro compound. The present structure determination was thus performed to study structural changes connected with 5-nitrobarbituric acid salt formation.

Experimental. Dilituric acid prepared as described by Hartman & Sheppard (1943). Colourless crystals (prisms) of the ammonium salt were obtained by slow cooling of a solution in boiling water (1.0 g ammonium salt needs 200 ml of boiling water). D_m by flotation in CH₂BrCl/CCl₄.

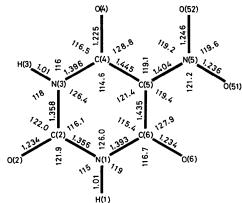
Crystal: $0.1 \times 0.2 \times 0.3$ mm, Enraf-Nonius CAD-4F diffractometer, graphite-monochromatized Mo Ka, lattice parameters from setting angles for 25 reflections with $7.79 < \theta < 13.52^{\circ}$. 1996 unique reflections $(h 0 \rightarrow 6, k \overline{10} \rightarrow 9, l \overline{13} \rightarrow 13)$ with $2.0 < \theta < 30.0^{\circ}$, 1596 with $I > 2.5\sigma(I)$ used in refinement process together with 'less-than' reflections [I < 0.55]

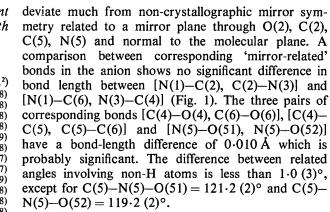
0108-2701/85/081258-03\$01.50

 $2 \cdot 5\sigma(I)$ with calculated values greater than the observed (1864 contributing reflections). Mixed $\omega/2\theta$ scan technique, scan angle = $1.40^{\circ} + 0.35^{\circ} \tan \theta$. Standard reflections $10\overline{4}$, 022 and 031 used for orientation control every 100 reflections, $03\overline{3}$ used for intensity check every 10800 s of exposure time, standard intensity variations < 2.3% of mean value. Lp correction, absorption ignored; direct methods, full-matrix least-squares refinement of anisotropic non-H atoms. Positional H parameters from $\Delta \rho$ map (remaining peak heights less than half those associated with H atoms). Refinements of H(x,y,z) with sin $\theta/\lambda < 0.40$ Å⁻¹, fixed isotropic H temperature factor. $\sum w(\Delta | F|)^2$ minimized, final R = 0.038, wR = 0.074,* weights $w = 1/\{1 + [(F_o)^2 + (F_o)^2 +$ $(-6.0)/(8.0)^2$ gave average $w\Delta(|F|)^2$ almost independent of $|F_{\alpha}|$, S = 2.34. Ratio of maximum leastsquares shift to error in final refinement cycle = 0.0018. Minimum and maximum in final $\Delta \rho$ map: -0.4 and 0.4 e Å⁻³. Scattering factors from International Tables for X-ray Crystallography (1974). Computer programs from SHELX76 (Sheldrick, 1976) and XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976). The positional and thermal parameters are given in Table 1.

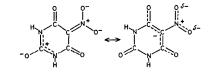
Discussion. The atoms in the anion show only small deviations from a least-squares plane defined by all the non-H atoms (except ammonium N). The deviations are within 0.03 (3) Å for endocyclic atoms and 0.05 (3) Å for exocyclic atoms. The anion does not

© 1985 International Union of Crystallography


^{*} Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and $NH_4^+\cdots O$ distances have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42231 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.


Table 1. Fractional coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters of non-H atoms with e.s.d.'s in parentheses

$B_{eq} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} (\mathbf{a}_{i}, \mathbf{a}_{j}).$						
	x	у	Z	$B_{eq}(Å^2)$		
O(2)	-4284 (3)	3236 (2)	5735 (1)	2.66 (8)		
O(4)	-1688(3)	4734 (2)	1752 (1)	2.64 (8)		
O(6)	1190 (3)	-12(2)	3287 (1)	2.95 (8)		
O(51)	2973 (3)	874 (2)	996 (1)	2.83 (8)		
O(52)	1735 (3)	3052 (2)	355 (1)	3.18 (9)		
N(1)	-1578 (3)	1618 (2)	4443 (1)	2.17 (8)		
N(3)	-2895 (3)	3936 (2)	3719 (1)	1.90 (7)		
N(5)	1636 (3)	2057 (2)	1185 (1)	1.77 (7)		
N(7)	3697 (3)	7353 (2)	1422 (1)	2.42 (9)		
C(2)	-2999 (3)	2940 (2)	4686 (1)	1.75 (8)		
C(4)	-1488(3)	3720(2)	2509 (1)	1.68 (8)		
C(5)	39 (3)	232/1 (2)	2333 (1)	1.63 (8)		
C(6)	-4 (3)	1222 (2)	3318 (1)	1.73 (8)		


Table	2.	Bond	disi	tance	es and	some	bond	angles	in
dilituri	c	acid	and	its	ammoi	nium	salt;	e.s.d.'s	ĭ'n
parentheses						/			

Bond (Å)/Angle (°)	Dilituric acid	Ammonium salt of dilitúric acid
N(1)C(2)	1.366 (5)	1.356 (2)
C(2)-N(3)	1-361 (5)	1.358 (2)
N(3)–C(4)	1.348 (5)	1.396 (2)
C(4)C(5)	1.408 (5)	1.445 (2)
C(5)-C(6)	1.452 (5)	1.435 (2)
C(6) - N(1)	1.382 (5)	1.393 (2)
C(4)–O(4)	1.302 (5)	1.225 (2)
C(6)–O(6)	1.223 (5)	1.234 (2)
C(5) - N(5)	1.406 (5)	1.404 (2)
N(5)-O(51)	1.222 (5)	1.236 (2)
N(5)-O(52)	1.259 (5)	1.246 (2)
C(5)-N(5)-O(51)	120.7 (3)	121.2 (2)
C(5)-N(5)-O(52)	119.4 (3)	119.2 (2)
O(51)-N(5)-O(52)	120.0 (3)	119.6 (2)

Differences between corresponding bonds in dilituric acid (Bolton, 1963) and its ammonium salt are quoted in Table 2; as expected, release of a proton from O(4)has the greatest effect on the nearest bonds, C(4)-O(4), N(3)-C(4) and C(4)-C(5). Apparently, a redistribution of π -electron density occurs so that the geometry of the anion approaches mirror symmetry.

Unexpectedly, salt formation does not change the bond C(5)-N(5) (Table 2). The sum of the N-O distances is also unchanged. N(5)-O(51) + N(5)-O(52) has the values 2.482 (3) and 2.481 (7)Å for the ammonium salt and dilituric acid respectively. Thus,

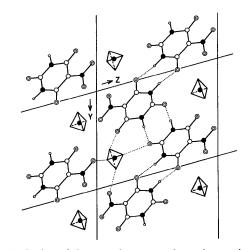
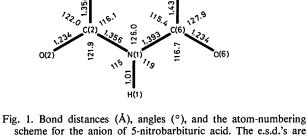



Fig. 2. Projection of the crystal structure down the x axis. Black circles: N atoms, double circles: O atoms. Ammonium ions are symbolized by tetrahedra. The dotted lines represent the hydrogen-bonding system. Some of the symmetry-related hydrogen bonds are omitted for clarity. Only the four shortest $NH_4^+\cdots O$ hydrogen bonds are drawn.

0.002 Å and 0.2° when no H atoms are involved, otherwise

0.04 Å and 2°.

there is no change in π -electron delocalization to the nitro group by salt formation. This is a difference from the related compounds nitromalonamide (Simonsen & Thorup, 1979) and its ammonium salt (Simonsen, 1981) where the C-NO₂ distances are 1.397 (4) and 1.327 (4) Å respectively.

The anions are connected in infinite chains by pairs of N-H···O hydrogen bonds grouped around centres of symmetry (Fig. 2). These hydrogen bonds may contribute to the low solubility of the title compound (0.072 g in 100 ml H₂O, 296 K). The N···O distances involved range from 2.825 (2) to 2.831 (2) Å. The distances from the ammonium N atom to the surrounding O atoms range from 2.935 (2) to 3.068 (2) Å.

Financial support from The Danish Natural Science Research Council and Thomas B. Thrige's Foundation for the purchase of the X-ray diffraction equipment is gratefully acknowledged.

References

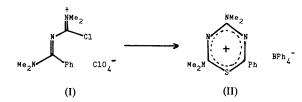
- BOLTON, W. (1963). Acta Cryst. 16, 950–956.
- HANTZSCH, A. (1907). Ber. Dtsch. Chem. Ges. 40, 1523-1556.
- HARTMAN, W. W. & SHEPPARD, O. E. (1943). Organic Syntheses, Coll. Vol. II, p. 440. New York: John Wiley.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SIMONSEN, O. (1981). Acta Cryst. B37, 344-346.
- SIMONSEN, O. & THORUP, N. (1979). Acta Cryst. B35, 432-435.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1985). C41, 1260–1262

2,4-Bis(dimethylamino)-6-phenyl-1,3,5-thiadiazinium Tetraphenylborate, $C_{13}H_{17}N_4S^+$. $C_{24}H_{20}B^-$

BY P. F. LINDLEY*

Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, England


AND W. E. BOTTOMLEY AND G. V. BOYD[†]

Department of Chemistry, Chelsea College, Manresa Road, London SW3 6LX, England

(Received 11 January 1985; accepted 1 May 1985)

Abstract. $M_r = 580.6$, monoclinic, $P2_1/a$, a =26.076 (13), b = 9.517 (5), c = 13.046 (7) Å, $\beta =$ $102 \cdot 11 (2)^{\circ}, \quad V = 3165 \cdot 5 (29) \text{ Å}^3,$ Z = 4, $D_r =$ 1.218 Mg m⁻³, $\lambda(\mathrm{Cu} \, K\alpha) = 1.54178 \, \mathrm{\AA},$ $\mu =$ $1 \cdot 125 \text{ mm}^{-1}$, F(000) = 1232, T = 293 (1) K, final R = 0.057 for 3899 significant reflections. In the almost planar 1,3,5-thiadiazinium moiety the endocyclic bond lengths indicate delocalization of electron density over the atomic centres, C(2), N(3), C(4), together with the exocyclic N atoms of the dimethylamino substituents [average C-N distance = 1.321 (9) Å], and a double bond of length 1.281 (4) Å between N(5) and C(6). The geometry of the tetraphenylborate anion is normal and there are no non-bonded contacts less than the sum of the respective van der Waals radii.

Introduction. We recently reported that 1-chloro-1,3bis(dimethylamino)-3-phenyl-2-azapropenylium perchlorate (I) reacted with potassium thiocyanate, followed by sodium tetraphenylborate, to yield the rearranged 1,3,5-thiadiazinium salt (II), whose structure was confirmed by X-ray analysis (Boyd, Lindley & Nicolaou, 1984). Since, to our knowledge this is the first determination of the structure of a 1,3,5-thiadiazinium salt, we present in this paper details of our work.

© 1985 International Union of Crystallography

^{*} Author to whom all correspondence should be addressed.

[†] Present address: Department of Chemistry, Queen Elizabeth College, Campden Hill, London W8 7AH, England.